Beirut Arab University, Lebanon
* Corresponding author
Beirut Arab University, Lebanon
Beirut Arab University, Lebanon
Alexandria University, Egypt

Article Main Content

Introduction: Maxillary sinus pneumatization and alveolar ridge resorption following the extraction of posterior teeth make the installation of dental implants in the maxillary posterior region challenging. The direct sinus lift procedure proved to be a viable treatment option for such conditions. Aim of the study: to evaluate the mineralized plasmatic matrix/xenograft mixture in sinus elevation surgery.

Materials and Methods: Eighteen patients were selected and randomly allocated into two groups; study group received a mineralized plasmatic matrix/xenograft mixture, while the control group received xenograft alone following sinus lifting.

Results: The early wound healing index score showed a non-significant difference between both groups. Also, bone height was evaluated at the 6-month follow-up period, and there was a non-statistically significant difference. Core biopsies were taken for histological examination by H&E from both groups, revealing the presence of a more mature bone matrix in relation to the test group.

Conclusion: The addition of mineralized plasmatic matrix to xenograft can speed up bone formation, thus reducing treatment duration.

References

  1. Andrés-García R, Ríos-Santos JV, Herrero-Climent M, Bullón P, Fernández-Farhall J, Gómez-Menchero A, et al. Sinus Floor Elevation via an Osteotome Technique without Biomaterials. International Journal of Environmental Research and Public Health. 2021; 18(3): 1103.
     Google Scholar
  2. Khoury F, Hanser T. Three-dimensional vertical alveolar ridge augmentation in the posterior maxilla: a 10-year clinical study. Int J Oral Maxillofac Implants. 2019; 34(2): 471-480.
     Google Scholar
  3. Chiapasco M, Zaniboni M. Methods to treat the edentulous posterior maxilla: implants with sinus grafting. Journal of Oral and Maxillofacial Surgery. 2009; 67(4): 867-871.
     Google Scholar
  4. Gultekin BA, Cansiz E, Borahan MO. Clinical and 3-dimensional radiographic evaluation of autogenous iliac block bone grafting and guided bone regeneration in patients with atrophic maxilla. Journal of Oral and Maxillofacial Surgery. 2017; 75(4): 709-722.
     Google Scholar
  5. Cardoso CL, Curra C, Santos PL, Rodrigues MF, Ferreira-Júnior O, de Carvalho PS. Current considerations on bone substitutes in maxillary sinus lifting. Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral. 2016; 9(2):102-107.
     Google Scholar
  6. Barbu HM, Andreescu CF, Comaneanu MR, Referendaru D, Mijiritsky E. Maxillary sinus floor augmentation to enable one-stage implant placement by using bovine bone substitute and platelet-rich fibrin. BioMed Research International. 2018; 2018.
     Google Scholar
  7. Del Corso M, Vervelle A, Simonpieri A, Jimbo R, Inchingolo F, Sammartino G, et al. Current knowledge and perspectives for the use of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in oral and maxillofacial surgery part 1: Periodontal and dentoalveolar surgery. Current Pharmaceutical Biotechnology. 2012; 13(7): 1207-1230.
     Google Scholar
  8. Kalash S, Aboelsaad N, Shokry M, Choukroun J. The efficiency of using advanced PRF-xenograft mixture around immediate implants in the esthetic zone: a randomized controlled clinical trial. Journal of Osseointegration. 2017; 9(4): 317-22.
     Google Scholar
  9. Călin DL, Rusu A, Mitrea M. sinus lift using a mixture of a-prf and cerabone and simultaneous insertion of a single implant. Romanian Journal of Functional & Clinical, Macro-& Microscopical Anatomy & of Anthropology. 2016; 15(1).
     Google Scholar
  10. Sghaireen MG, Ganji KK, Alam MK, Rahman SA, Billah SM. Mineralized Plasmatic Matrix in Ridge Preservation: A Randomized Controlled Clinical Trial. International Journal of Periodontics & Restorative Dentistry. 2021; 41(3).
     Google Scholar
  11. Sghaireen MG, Alzarea BK, Alam MK, Ab Rahman S, Ganji KK, Alhabib S, et al. Implant Stability, Bone Graft Loss and Density with Conventional and Mineralized Plasmatic Matrix Bone Graft Preparations-A Randomized Crossover Trial. Journal of Hard Tissue Biology. 2020; 29(4): 273-278.
     Google Scholar
  12. Zhang Y, Tangl S, Huber CD, Lin Y, Qiu L, Rausch-Fan X. Effects of Choukroun’s platelet-rich fibrin on bone regeneration in combination with deproteinized bovine bone mineral in maxillary sinus augmentation: a histological and histomorphometric study. Journal of Cranio-Maxillofacial Surgery. 2012; 40(4): 321-328.
     Google Scholar
  13. Nadon F, Chaput B, Périssé J, de Bérail A, Lauwers F, Lopez R. Interest of mineralized plasmatic matrix in secondary autogenous bone graft for the treatment of alveolar clefts. Journal of Craniofacial Surgery. 2015; 26(7): 2148-2151.
     Google Scholar
  14. Landry RG. Effectiveness of benzydamine HC1 in the treatment of periodontal post-surgical patients. Ph.D. Thesis. University of Toronto; 1985.
     Google Scholar
  15. Moon JW, Sohn DS, Heo JU, Kim JS. Comparison of two kinds of bovine bone in maxillary sinus augmentation: a histomorphometric study. Implant Dentistry. 2015; 24(1): 19-24.
     Google Scholar
  16. Stacchi C, Andolsek F, Berton F, Perinetti G, Navarra CO, Di Lenarda R. Intraoperative Complications During Sinus Floor Elevation with Lateral Approach: A Systematic Review. International Journal of Oral & Maxillofacial Implants. 2017; 32(3).
     Google Scholar
  17. Jordi C, Mukaddam K, Lambrecht JT, Kühl S. Membrane perforation rate in lateral maxillary sinus floor augmentation using conventional rotating instruments and piezoelectric device-a meta-analysis. International Journal of Implant Dentistry. 2018; 4(1): 1-9.
     Google Scholar
  18. Barone A, Santini S, Marconcini S, Giacomelli L, Gherlone E, Covani U. Osteotomy and membrane elevation during the maxillary sinus augmentation procedure: a comparative study: piezoelectric device vs. conventional rotative instruments. Clinical Oral Implants Research. 2008; 19(5): 511-5115.
     Google Scholar
  19. Rickert D, Vissink A, Slater JJ, Meijer HJ, Raghoebar GM. Comparison between conventional and piezoelectric surgical tools for maxillary sinus floor elevation. A randomized controlled clinical trial. Clinical Implant Dentistry and Related Research. 2013; 15(2): 297-302.
     Google Scholar
  20. Barbu HM, Iancu SA, Jarjour Mirea I, Mignogna MD, Samet N, et al. Management of Schneiderian membrane perforations during sinus augmentation procedures: a preliminary comparison of two different approaches. Journal of Clinical Medicine. 2019; 8(9): 1491.
     Google Scholar
  21. Marini L, Sahrmann P, Rojas MA, Cavalcanti C, Pompa G, Papi P, et al. Early Wound Healing Score (EHS): An intra-and inter-examiner reliability study. Dentistry Journal. 2019; 7(3): 86.
     Google Scholar
  22. Gürler G, Delilbaşı Ç. Effects of leukocyte-platelet rich fibrin on postoperative complications of direct sinus lifting. Minerva Stomatologica. 2016; 65(4): 207-212.
     Google Scholar
  23. Dragonas P, Katsaros T, Avila-Ortiz G, Chambrone L, Schiavo JH, Palaiologou A. Effects of leukocyte–platelet-rich fibrin (L-PRF) in different intraoral bone grafting procedures: a systematic review. International journal of Oral and Maxillofacial Surgery. 2019; 48(2): 250-262.
     Google Scholar
  24. Abou-Ellill R, Ismail R, El-Sharkawy A. Posterior maxillary ridge augmentation with sinus lift using Mineralized Plasmatic Matrix versus Autogenous Bone Graft. Egyptian Dental Journal. 2021; 67(2): 1157-1164.
     Google Scholar
  25. Younes F, Cosyn J, De Bruyckere T, Cleymaet R, Eghbali A. A 2‐year prospective case series on volumetric changes, PROMs, and clinical outcomes following sinus floor elevation using deproteinized bovine bone mineral as filling material. Clinical Implant Dentistry and Related Research. 2019; 21(2): 301-309.
     Google Scholar
  26. Galindo‐Moreno P, Padial‐Molina M, Lopez‐Chaichio L, Gutiérrez‐Garrido L, Martín‐Morales N, O'Valle F. Algae‐derived hydroxyapatite behavior as bone biomaterial in comparison with anorganic bovine bone: A split‐mouth clinical, radiological, and histologic randomized study in humans. Clinical Oral Implants Research. 2020; 31(6): 536-548.
     Google Scholar
  27. Velasco‐Ortega E, Valente NA, Iezzi G, Petrini M, Derchi G, Barone A. Maxillary sinus augmentation with three different biomaterials: histological, histomorphometric, clinical, and patient‐reported outcomes from a randomized controlled trial. Clinical Implant Dentistry and Related Research. 2021; 23(1): 86-95.
     Google Scholar
  28. Khairy N, Elsharkawy RT, Elsharkawy RT. A 6-Month Histologic and Histomorphometric assessment of Xenograft or Xenograft combined with plasma rich in growth factors versus autogenous bone in sinus augmentation: A Randomized controlled trial. Egyptian Dental Journal. 2019; 65(3-July (Oral Surgery)): 2067-2076.
     Google Scholar
  29. Liu R, Yan M, Chen S, Huang W, Wu D, Chen J. Effectiveness of platelet-rich fibrin as an adjunctive material to bone graft in maxillary sinus augmentation: a meta-analysis of randomized controlled trails. BioMed Research International. 2019; 2019.
     Google Scholar
  30. Nizam N, Eren G, Akcalı A, Donos N. Maxillary sinus augmentation with leukocyte and platelet‐rich fibrin and deproteinized bovine bone mineral: A split‐mouth histological and histomorphometric study. Clinical Oral Implants Research. 2018; 29(1): 67-75.
     Google Scholar
  31. Cinar IC, Gultekin BA, Saglanmak A, Yalcin S, Olgac V, Mijiritsky E. Histologic, histomorphometric, and clinical analysis of the effects of growth factors in a fibrin network used in maxillary sinus augmentation. International Journal of Environmental Research and Public Health. 2020; 17(6): 1918.
     Google Scholar