RESEARCH ARTICLE

The Assessment of Blood Exposure Accidents at Casablanca Dental Center for Treatment and Consultation in Morocco

Amessegher Fatima Zahra¹, Doumari Bouchra^{1,*}, Bouchra Badre², and Karami Malika²

ABSTRACT

Objective: The purpose of this analysis is to determine the frequency of blood exposure accidents (BEAs), evaluate the knowledge, attitudes, and practices of dentists regarding infectious risk, particularly after a BEA, and to propose actions within a prevention policy framework.

Method: A descriptive epidemiological survey was conducted among 142 dentists practicing at the Dental Consultation and Treatment Center through an anonymous questionnaire.

Results: Our study found a response rate of 96.6%, noting that standard precautions were used regularly and systematically by most dentists: glove use 95.8%, protective goggles 36.5%, face mask 83%, use of sharps containers 90.8%, but only 39.2% had received the hepatitis B booster vaccine. In fact, 53.8% of dentists declared having been victims of at least one BEA. The most frequent mechanism of occurrence was needle sticks (73.2%). We identified gaps in their attitudes towards BEA: among 90.6% who practiced emergency measures after a BEA, only 83.9% practiced them properly. Furthermore, there is a discrepancy between the knowledge and the practitioners' actual practice regarding these accidents. Among the 94.7% of practitioners who stated serological follow-up is necessary after a BEA, only 63.2% checked the serological status of patients involved in the BEA.

Conclusion: These results show the urgent need for improved procedures to reinforce awareness and enhance dentists' understanding of BEA risks. Additionally, training practitioners is essential to better control the conduct to be followed immediately and subsequently in the event of such accidents.

Keywords: Blood exposure accidents, dentistry, occupational risk, prevention.

Submitted: May 06, 2025 Published: November 13, 2025

슙 10.24018/ejdent.2025.6.6.381

¹ Assistant Professor, Faculty of Dental Medicine Hassan II University Morocco ²University Professor, Faculty of Dental Medicine, Hassan II University, Morocco.

*Corresponding Author: e-mail: bouchradmri@gmail.com

1. Introduction

A blood exposure accident (BEA) is defined as "any accidental exposure to blood or a biological fluid contaminated with blood, involving a cut or a prick to the skin, or a splash into mucous membranes or injured skin" [1].

The risk of exposure to blood lies in the possible transmission of blood-borne viruses, including HIV and hepatitis B and C. These risks are assessed according to the nature of the biological product and the type of lesion (Circular DGS/DH). According to a study by Yasukawa and Tilotta-Yasukawa [2] the risk of transmission of the hepatitis C virus after a percutaneous accident is related to

the task in progress, the depth of the wound and the viral load in the source patient.

The average risk of transmission after professional exposure to contaminated blood is estimated at 30% for HBV. when the source patient is HBsAg positive, regardless of the stage of infection (acute or chronic). For HCV, it is about 3% but can reach 10% if the source subject has a positive HCV Rna [3]. For HIV, in the case of percutaneous exposure, it is 0.3% and 0.09% after mucosal exposure [4]. The risk after dermal exposure is lower but has not been estimated. There are insufficient data to assess the risk of transmission after exposure to infected tissue or other biological fluids.

Although there is a large body of scientific literature concerning BEA in health care settings, there are few data available concerning BEA occurring in the dental area. Dental staff are at high risk of BEAs, with incidence rates varying according to studies [5].

In Morocco, a country of medium endemicity for HBV the prevalence of HIV and HCV infections are insufficiently evaluated. In addition, the risk for caregivers in the event of an AES is insufficiently taken into account [6].

The purpose of this study is to evaluate the knowledge, attitudes and practices of dentists concerning the risk of infection, particularly after an AES, to determine the prevalence of viral infections related to BEA and to propose actions in the framework of a preventive policy.

2. Methods

A descriptive cross-sectional survey was carried out. The target population was of 150 dentists (all interns, residents, specialists and professors) practicing in the Casablanca Dental Consultation and Treatment Center (CCTD). The survey was based on an individual, anonymous questionnaire, distributed directly to the various departments and consisting of 4 pages with 53 items, the majority of which had a predetermined response. The questionnaire had 3 main sections: the first section concerned socio-demographic and professional data like sex, age, and grade; the second section concerned primary prevention, including 3 parts: (the patient's state of health, individual protection, and protection of the patient and the practitioner); and the last section concerned secondary prevention.

The survey started on March 25, 2024 and ended on June 28, 2024. The questionnaire was distributed directly by the single interviewer.

A pre-survey was carried out with six dentists practicing at the CCTD before distributing the questionnaire to the dentists in the sample in order to check the relevance of the questions and to detect any difficulties in understanding them.

Our study included dentists practicing at the CCTD of Casablanca, i.e., interns, residents, specialists and professors, and excluded Dentists practicing in the private sector and Dentists practicing in the CCTD of Rabat dentists practicing at the CCTD of Casablanca who participated in the pre-survey.

Statistical data was entered and analyzed with JAMOVI version 1.6.23.0.

3. Results

Out of 144 questionnaires distributed, we obtained 142 responses, i.e., a response rate of 98.61%.

The sex-ratio was 3.05 the practitioners were between 23 and 30 years old was 45.7%. However, 30.3% of the practitioners did not report their age; the majority, 32.4% of practitioners, were professors. 17.7% of the practitioners were assigned to the Pedodontics Department (Table I).

TABLE I: PARTICIPATION RATE AND IDENTIFICATION

	N	(%)
Sex $(n = 142)$		
Female	107	(75,4)
Male	35	(24,6)
Age (n = 96)		
23 to 30 years old	48	(45.72)
From 31 to 40 years old	27	(25.71)
From 41 to 50 years old	21	(20)
Grade $(n = 142)$		
Professor	46	(32.04)
Resident	45	(31)
Specialist	35	(24.6)
Intern	16	(11.3)
Department $(n = 142)$		
$PEDO^*$		
PATHO*	25	(17.7)
OCE*	22	(15.6)
PARO*	21	(14.9)
PA^*	20	(14.1)
PC^*	19	(13.5)
ODF^*	17	(12.1)
	17	(12.1)

Note: -Pedo: pedodontics. -Patho: surgical odPatho:y. -OCE: conservative odontology endodontics. -Paro: periodontology. -PA: adjoiningprosthesis. -PC: Conjoint Prosthodontics. ODF: Dentofacial Orthopedics.

3.1. Primary Prevention Data

The results show that 87.1% of practitioners asked their patients about the presence of a blood transmitted infections and 49.3% of practitioners used a pre-printed questionnaire to collect this information. In the case of presence of a blood transmitted infection, 97.2% of the practitioners investigated further, 96.3% of the practitioners contacted the treating physician, 65.1% of the practitioners ordered tests and 8.1% used other investigations such as checking medical records.

Regarding clothing, 78.2% (104 practitioners) changed their clothing once it was soiled. Concerning the means used to protect the eyes, 65.1% of the practitioners used a visor to protect their eyes. 34.9% of the practitioners used protective glasses. Regarding the wearing of masks, 83.0% of the practitioners always wore a mask while 5.7%only wore it when necessary. 69.5% of the practitioners changed their masks once a shift while 30.5% changed them between patients. 86.5% of the practitioners did not reuse their gloves while 13.5% reused them (Table II).

The majority (99.3%) of the practitioners used surgical drapes of which 96.4% used disposable drapes. For the use of the dam, we note that 85.1% of the practitioners used it during endodontic care and most of them (98.6%) used disposable salivary cannulas 93.3% of the practitioners sterilized the material and 87.8% of the practitioners used sterilization bags as a means of packaging. 90.8% of practitioners disposed of sharps in containers and 82.9% of practitioners recapped needles after use. As for the equipment of the CCTD, 91.4% of the practitioners said that the CCTD sterilization facility is equipped with an autoclave. 10% of the practitioners did not know the equipment of the CCTD sterilization facility (Table III).

TABLE III:	TABLE III: Protection of the Patient and the Practitioner		
	(N) (%	<u>–</u>	

140

133

5

0

80

70

42

99.3

96.4

3.6

0.00

85.1

74.5

44.7

TABLE II: MEANS OF DATA COLLECTION AND PROFESSIONAL CLOTHING		TABLE III: PROTECTION OF THE P	
	(N)	(%)	
Interrogation of patient	121	87.1	Operating fields.
Printed clinical observation	70	49.3	Types of surgical drapes
Further investigation	137	97.2	Disposable
Steps to take if an STI is present			Reusable
Contact the treating physician	130	96.3	After washing
Ask for tests	89	65.1	Dam
Other	11	8.1	Endodontic care
Professional attire			Conservative care
A blouse	129	90.8	Prophylactic care
A tunic and pants	50	35.5	Prosthetic care
Shoes	49	34.8	Salivary cannulas
Change of clothes			Disposable
Every time it is soiled	104	78.2	Reusable
Every day	19	14.3	Asepsis chain
Weekly	10	7,5	Sterilization
Use of eye protection:		, in the second	Soaking in a disinfectant solut
In some situations	61	44,5	Washing with detergent
Always protection	50	36,5	Other
No protection	26	19,0	Equipment of the CCTD
Type of eye protection		. , .	Autoclave
Visor	84	65.1	Poupinel
Goggles	45	34,9	No idea
Other	0	0.00	Packaging
Wearing a mask			Bags
Always	117	83.0	Metal boxes
Never	16	11,3	None
If necessary	8	5,7	Sharps management (needles and scalp
Type of mask used	-	-,.	Collector
Synthetic fiber	109	76,8	Garbage can
Paper	26	18.3	Recapping of needles
Other	7	4,9	Always
Change of masks	,	1,,,	Often
Once per shift	91	69.5	Sometimes
Between each patient	40	30,5	Never
Wearing of gloves	.0	20,2	Treatment of the rotating syst
For all consultations	136	95,8	Decontamination of the cha
Only for non-bloody care	1	5	Treatment of the suction syste
Only for bloody care	5	3.5	Water suction
Reuse of gloves	J	3.3	Suction of disinfectant soluti
Do not reuse gloves	122	86.5	disinfectant solution
Reuse gloves	19	13.5	Washing of impressions
Protection of wounds	17	13.3	
Wound protection	117	83.6	
No protection	23	16,4	TABLE IV: IMMUNOPREVENTION
Hand washing	23	10,4	
Always	106	75.2	Vaccination
Often	34	24,1	
Officia	J '1	∠4,1	Hepatitis B

Prosthetic care	17	18.1
Salivary cannulas		
Disposable	138	98.6
Reusable	2	1.4
Asepsis chain		
Sterilization	126	93,3
Soaking in a disinfectant solution	114	84,4
Washing with detergent	81	60,0
Other	0	0,0
Equipment of the CCTD		
Autoclave	128	91,4
Poupinel	13	9.3
No idea	14	10
Packaging		
Bags	122	87.8
Metal boxes	23	16.5
None	8	5.8
Sharps management (needles and scalpel b	lades)	
Collector	128	90.8
Garbage can	13	9.2
Recapping of needles		
Always	116	82.9
Often	22	15.7
Sometimes	1	0.7
Never	1	0.7
Treatment of the rotating system	43	33.9
Decontamination of the chair	114	87.7
Treatment of the suction system		
Water suction		
Suction of disinfectant solution	70	56.5
disinfectant solution	54	43.5
Washing of impressions	121	92.4
TABLE IV: IMMUNOPREVENTION A	MONG CCTD DENTI	STS
	(N)	(%)
Vaccination		
Hepatitis B	103	83.1
Tetanus	73	58.9
Rubella	53	43.1
Hepatitis A	48	38.7
Vaccination reminders	73	39.2

The majority (83.1%) of practitioners were vaccinated against hepatitis B, but 60.8% of practitioners did not respect the vaccination reminders and 51.3% of practitioners did not respect the vaccination intervals (Table IV).

1

0,7

3.2. Secondary Prevention Outcomes

Never

Informations about BEA: In this survey, 95.5% of the practitioners knew what a BEA was, 53.1% of them had received special training about it while 46.9% of the practitioners had not; among the practitioners who had received training 88.7% of the practitioners had received it during their university course.

Adherence to vaccination intervals

The percentage of the practitioners who already have had a BEA was 53.8%; 35.4% never had one, while 10.8% of the practitioners could not remember if they did. Regarding the nature of the exposure, we found that 85.9% of the practitioners had a BEA between one to five times,

38

48.7

TABLE V: HISTORY AND NATURE OF BEA, KNOWLEDGE AND IMMEDIATE

ACTIONS TAKEN		
	(N)	(%)
History of BEA		
Yes	70	53.8
No	46	35.4
Don't know	14	10.8
Number of exposures		
1 to 5 times	61	85.9
From 6 to 10 times	9	12.7
More than 10 times	1	1.4
The services concerned		
PATHO	26	48.1
OCE	13	24.1
PEDO	12	22.2
PA	8	14.8
PARO	8	14.8
PC	8	14.8
ODF	7	12.7
Types of BEA		
Sting	52	73.2
Projection in the eye	31	44.3
Cut	25	35.7
Direct contact of Blood with injured skin	8	11.4
Questioning the patient about his health		
Yes	48	36.8
Patient's health status		
Viral hepatitis	25	49
Good condition	21	42
HIV	19	37.3
Practitioners' attitudes toward the patient after an SEA		
Carry out emergency measures	87	90.6
Stop the procedure	67	69.8
Feeling panic	47	49.5
Measures of the dental doctor after AES		
Washing + antisepsis	94	83.9
Washing + compression	6	5.4
Washing alone	6	5.4
No	4	3.6
Antisepsis alone	2	1.8
BEA Statement	86	66.7
Provision of an occupational health form	13	9.9
Serological follow-up after BEA	126	94.7

Note: -Pedo: pedodontics. -Patho: surgical odontology. -OCE: conservative odontology endodontics. - Paro: periodontology -PA: adjoining prosthesis. -PC: Conjoint Prosthodontics ODF: Dentofacial Orthopedics.

while 12.7% of the practitioners had a BEA between 6 and 10 times and only 1.4% of the practitioners had it more than 10 times (Table V). 48.1% of BEAs had occurred in the Surgical Dentistry department, 24.1% in the Department of Conservative Dentistry and Endodontics, 22.2% in the Pedodontics Department, 14.8% in the Adjoint Prosthodontics Department, 14.8% in the Periodontology Department, 14.8% in the Conjoint Prosthodontics Department and 12.7% in the ODF Department.

3.3. Need for Training

As for need for training, 86.5% of the practitioners felt the need for training to better cope with BEA. Only 60 of the practitioners who requested training suggested the type of training they needed (16 practitioners preferred

continuing education, 13 practitioners preferred to attend workshops, 15 practitioners preferred to attend seminars, 10 practitioners preferred to see posters or forms, and only 6 preferred practical or tutorial sessions).

Practitioners were asked if this training should be included in the university curriculum and 92.2% of the responses were in favor, emphasizing the importance of such an approach in improving attitudes toward BEA.

4. Discussion

4.1. Personal Protection

4.1.1. Professional Clothing

The results described in our study are largely superior to those obtained in other studies in the same country. However, in our sample, 90.8% were satisfied with wearing a gown, which remains insufficient for the protection of the practitioner. According to the recommendations, each practitioner must be dressed in a complete outfit (gown, tunic, and shoes), ensuring optimal protection. This outfit, which is specific to dental practice, must be changed every day or every time it is soiled [7]. In case of incomplete attire, it is preferable to wear a gown long enough to protect the clothing from contamination. This is not the case for the majority of practitioners who wear short gowns with half sleeves and expose themselves directly to microorganisms [8].

This paper proposes wearing protective eyewear; the results described by our study are largely lower than those obtained in the following countries. In Germany, a study conducted on the professional exposure of dentists to bloodborne infections showed that 48.6% used protective eyewear [3]. In Mexico, a study of the attitudes and practices of dentists toward HIV patients showed that 79% of Dentists always wore protective eyewear during dental care for STIs. This figure is still high because this study was carried out on patients with an STI [9].

On the other hand, in our study, 65.1% of the practitioners protected their eyes with a splash protector visor, while 34.9% wore protective glasses. In Germany, a study on the incidence of hepatitis B and C among dentists showed that 58% of dentists always used protective glasses during dental care and 32% used protective glasses occasionally [10]. In contrast, a study conducted at the Nancy Medical School reported that students wearing corrective eyewear reported feeling protected all the time, whereas eveglasses did not stop the risk of splashing because they did not provide lateral eye protection [11].

Therefore, eyeglasses do not replace protective eyewear. It should also be noted that the disinfection of the protective material is mandatory between two patients [12].

In fact, each practitioner must wear protective glasses which must be wide with thick and rounded edges conferring protection for the eye and its environment.

4.1.2. Wearing a Mask

Knowing that the risk is the same for the practitioner and the patient, the mask provides double protection. It must be wide, covering the nose and mouth, made of synthetic fibers, and changed each time it is soiled or wet, and this for each patient [13].

4.1.3. Wearing Gloves

In our study 95.8% of the practitioners were gloves no matter what the procedure was including consultation.

These results are consistent with those found in other studies; in Rabat's CCTD, 97.2% of practitioners were gloves for all procedures [13]. In a study conducted in Casablanca, all practitioners wore gloves for all procedures, including consultations [14]. Moreover, a study conducted in Brazil showed that 98% of dentists always used gloves during treatment [15]. However, in Algeria, only 47.4% of practitioners were gloves for all procedures [16]. In our study 86.6% of the population studied, never reused gloves, while 16.4% of practitioners reused them.

Similarly, in Brazil, 92% never reused gloves, while 8% reused gloves after cleaning and disinfecting them with alcohol [15].

In fact, according to the literature, wearing gloves during a percutaneous accident allows, by wiping effect, to decrease the size of the blood volume inoculated by a hollow needle by 46 to 86% [17].

Thus, a pair of gloves significantly reduces the volume of blood inoculated by a suture needle. This decrease in volume is even greater with two pairs of gloves [18].

It is important to remember that a good dentist should never reuse gloves for another patient. He must be as concerned about his patient's health as his own, while avoiding the risk of cross-contamination [13].

4.1.4. Protection of Wounds during Treatment

Knowing that a small wound can be a gateway for germs such as HBV, HCV, or HIV, the protective role of a clean dressing before putting on gloves for work cannot be overlooked.

It is important to mention that protecting a wound with a bandage remains essential before putting on gloves. The risk of glove tearing is omnipresent, regardless of the nature of the procedure [18].

4.1.5. Hands Hygiene

Unfortunately, only 75.2% of practitioners at the Casablanca CCTD were aware of and regularly washed their hands after each patient, 24.1% did so often, and 0.7% occasionally. This constitutes a risk factor for both the practitioner and the patient.

These results appear to be compatible with a study conducted in Brazil that showed that 86.7% of dentists washed their hands before and after care [19].

As a matter of fact, hand washing is a very important measure to reduce the risk of hand transmission of microorganisms.

Hand hygiene is one of the simplest, most inexpensive, and yet effective infection control measures in health care settings, including dentistry [5].

4.2. Protection's Respect for the Patient and Practitioner

4.2.1. Surgical Drapes

According to our survey, the majority of CCTD's practitioners 99.3% used surgical drapes, 96.4% used disposable drapes and 3.6% reused them.

The results obtained were similar to those obtained in other studies in the same country.

Nevertheless, according to universal standards, drapes should be in the form of clean disposable paper drapes for each patient and should be discarded immediately

In addition, the use of tissue drapes can only be tolerated in case of surgery, and only if they are properly sterilized before the surgical procedure [13].

4.2.2. Rubber Dam

The role of the dam is not limited to isolating the teeth from the rest of the oral cavity, but it also plays an important role in controlling contamination due to aerosols and septic splashes [14].

If the dam cannot be used and in order to reduce the risk of contamination the patient should rinse the mouth with a 0.1% chlorhexidine gluconate solution to decrease the concentration of oral microorganisms [17].

4.2.3. Management of Contaminated Waste

As reported by our study, 90.8% of practitioners disposed of sharps in a waste bin, while 9.2% disposed of them in the trash.

These results are superior to those obtained in other countries: A Tunisian survey showed that 77% of the population studied confirmed the use of collectors for the disposal of contaminated sharps, while the remained (23%) only used the trash can [20]. Another study conducted in Brazil in 2008 revealed that 64.6% of the practitioners used special containers for the collection of these OCPT, while 35.4% threw them directly into the garbage [3].

In order to optimize their use, it is necessary to ensure the rigorous management of these sharp materials:

The collector must be placed near the work field and cleared of its contents each time the fill level is reached [18]. It must also have a suitable volume, a visible maximum fill level and a good seal [21].

4.2.4. Recapping Needles

Conforming to our study, 82.2% of practitioners always recapped the needle after use and 15.7% of practitioners did so often.

On the other hand, in a study done in Strasbourg, only 19% of the practitioners always recapped the needles, 20% did it often, 26% did it sometimes, and 35% never recapped the needles [2].

After use, needles are recapped with one hand and a mirror blocking the needle cap. Two-handed recapping is prohibited [22], [18].

4.2.5. Chair Decontamination

Based on our study, 12.3% of practitioners did not decontaminate their workstations. Also, in Rabat's CCTD, 38.6% of practitioners did not decontaminate their chairs. For the practitioners who did, 62.8% of them did so correctly with a decontaminant product: 'Chlorispray', whilst 37.2% used bleach instead [13].

In theory, every surface in a dental care setting should be decontaminated between patients. Chairside hygiene is considered the most essential because one can never tolerate working in an environment where germs are present [23].

4.2.6. Treatment of the Suction System

The results of our survey showed that 56.5% of practitioners at the Casablanca CCTD used water to decontaminate the suction system, while 43.5% of practitioners used a disinfectant solution.

Unlike the CCTD in Rabat, where only 12.7% of practitioners used either bleach or another disinfectant, 87.3% of practitioners aspirated with water only [13].

Thus, a disinfectant cleaner suction should be used to disinfect the suction system between patients to eliminate any risk of residual germ contamination [14].

4.2.7. Decontamination of Impressions

At the Casablanca CCTD, almost all the practitioners (92.4%) washed the impressions, whilst 7.6% did not wash the impressions after they had been made. These results are in line with those observed in other studies in the same

It should be noted that washing impressions with running water is insufficient because they must be disinfected with a disinfectant solution and dried as a prophylactic measure [17].

4.2.8. Vaccination Coverage

he results of our survey revealed that 38.7% of practitioners were vaccinated against hepatitis A and 83.1% were vaccinated against hepatitis B; also, 58.9% of practitioners were vaccinated against tetanus and 43.1% of female practitioners were vaccinated against rubella. Similarly, in Italy, a survey of dentists' knowledge, attitudes, and practices towards immunization showed that 85.7% of dentists were correctly vaccinated against hepatitis B [24].

In the city of Berlin, a survey on hepatitis B and C showed that 74% of dentists were vaccinated against hepatitis B [10].

A survey of dentists in Casablanca published that 24.4% of practitioners were vaccinated against hepatitis A, 68.3% against hepatitis B, 18.3% against influenza, and 66.2% of female practitioners were vaccinated against rubella [14]. However, in Algeria, a survey on BEA among dentists showed that 42% of practitioners were vaccinated against hepatitis B [16].

At the CCTD in Rabat, only 30.3% of practitioners were vaccinated against viral hepatitis B, 9.2% against influenza, and 19.3% of female staff against rubella [13].

In Vâlcea, Romania, a study on the practices of dentists towards infection showed that only 26% were vaccinated against hepatitis B [25].

An effective vaccination totally prevents the risk of contamination by HBV. It can only be controlled by verifying an anti-HBs antibody titer that must be greater than 10 IU/L. The notion of a protective titer, even an old one, is sufficient to guarantee total and definitive protection against infection by the B virus [26], [19].

4.2.9. Compliance with Secondary Prevention

The results of our study revealed that 53.8% of dentists reported having been the victim of at least one BEA.

This result is similar to the one reported in Algeria, where a survey on BEA among dentists showed that 50% of dentists had been victims of BEA [16].

On the other hand, this percentage is lower in a study conducted in Brazil on occupational exposure among Brazilian dentists, which showed that 31.1% of dentists had suffered at least one BEA [15]. Similarly, in Casablanca in 2017, 39% of dentists reported having experienced at least one BEA [14].

In fact, among all medical and paramedical professions, dentistry remains the profession most exposed to this type of BEA.

In the United States, the BEA surveillance network analyzed BEA occurring during the period 1995–2004 and revealed that 36% of BEA involved dentists [27]. Also in Washington State, between 1995 and 2001, nearly 20% of BEAs were reported by dentists [27].

In our study, 73.2% of dentists had a sting accident, whilst 44.3% reported having a splash in the eye. We also noted that 35.7% of dentists had a cut accident, whilst a minority of 11.4% reported having direct contact with blood on their injured skin during dental care.

Moreover, these accidents by pricking were also the most frequent in the following studies:

- In Casablanca, the most frequent mechanism of contamination was the pricking by the syringe during the realization of anesthesia or the recapping of the needle in 91.6% of the cases, followed by projection in the eye with a rate of 43.8% [14].
- In the United States, the BEA surveillance network revealed that the equipment involved was mainly the hollow needle (31%) and the anesthesia syringe (80%) [27].
- In Washington State, between 1995 and 2001, 87% of the BEA cases were due to the syringe needle [27].
- In Algeria, a survey of BEA among dentists showed that needle stick was the most frequent mechanism (66.3%) [16].
- Additionally, a study carried out at the Faculty of Dentistry in Nancy reported that 66.7% of accidents were due to needlesticks; 25.9% to cuts and 7.4% to projections [11].

The figures found in our study are alarming. Indeed, most practitioners at the CCTD have had at least one BEA, and this could only be explained by the ignorance of practitioners regarding the risk incurred during several practices such as recapping needles by hand and poor waste management. As it seems, we cannot protect ourselves if we are not aware of the danger that threatens us.

4.2.10. Serological Status of the Source Patient 4.2.10.1. History of BEA

In our study, 63.2% of the victims declared having sought the serological status of the source patients. This result is much higher than those found in other studies. In the private sector in Casablanca, only 16.6% of dentists reported having sought the serological status of the source patients [14].

In our study, 42% of the practitioners had the accident with a patient in good general condition. However, 37.2% of the practitioners had the accident with an HIV patient and 49% with a patient with viral hepatitis.

These results differ from those found in a study in Casablanca in 2017, where 66.2% of practitioners had a BEA occurring with healthy patients, 32.3% with patients with viral hepatitis, and 1.5% with HIV patients [14].

Moreover, in 2004, 54 occupational HCV seroconversions were documented in French health care workers: 41 of them were in contact with a source patient known to be infected with HCV. In 1996, the annual number of HCV seroconversions was between 2 and 5 [22].

There are also American studies that have shown that contamination varies according to specialization. Namely, dentists with activity oriented towards minor surgery have a higher risk than those with general practice activity. In fact, the hepatitis B virus was detected in 2% of dentists specializing in surgery as opposed to 0.7% of general practitioners [22].

Despite this, in our study, 5.3% of the practitioners considered that serological follow-up after BEA was not necessary.

The identification of the serological status of the source patient remains an important step in the management of victims of BEA because, in the fortunate case where the source patient is seronegative for the three viruses (HIV, HCV, and HBV), this allows the victim to be relieved of the burden of antiretroviral chemo-prophylaxis and serological monitoring [13].

4.2.10.2. Attitudes in the Event of a BEA

4.2.10.2.1. Immediate Action

n light of our study, we found that 83.9% of practitioners performed a wash and antiseptic treatment after a BEA. However, the time spent disinfecting by the practitioners was not taken into account in the questionnaire. Therefore, it is not possible to verify whether the recommended 5 minutes of wound immersion was actually performed.

In the private sector of Casablanca, 79.3% of practitioners induced bleeding of the wound, performed antisepsis of the site with alcohol or sodium hypochlorite, and then bandaged [14].

On the other hand, these percentages were lower in a study carried out in Rabat, where only 53.2% of the practitioners proceeded immediately to emergency measures [13].

In fact, after contact with blood or biological fluids, local care must be taken immediately in order to limit the risk of contamination and, above all, not to cause bleeding in the wounds.

4.2.10.2.2. Statement

Our study showed that 66.7% of dentists thought that in the event of an AES, a declaration should be made within 24 hours of the accident.

On the other hand, in the private sector, 62.3% of practitioners in Casablanca and 64% in Kenitra believed that a short period of time should be observed to contact the referring physician [14], [5].

When questioning the practitioners in our study about the place of declaration, only 30 practitioners (21.12%) noted that the declaration must be made to the occupational medicine department, 10 practitioners (7.04%) said that the declaration should be made to the infectious diseases department, whilst the others did not know the place of declaration and preferred not to answer.

In the private sector in Casablanca, 18.3% of practitioners knew that the declaration must be made to the occupational medicine department [14].

However, this declaration is rarely made. Also, in 2008, a cross-sectional study of blood exposure accidents among dentists in the private and public sectors in western Algeria revealed that only 2 victims reported the accident to the social security fund and no report was made by dentists in the private sector [16].

This could be explained by the underestimation of the risk, the ignorance of the administrative steps, the lack of time and interest, as well as the very constraining character of the procedure which includes serological follow-up and possible antiretroviral chemoprophylaxis, and especially the disagreement of the dentists with the occupational medicine service. This often neglected reporting is an obstacle to a constant epidemiological evaluation of the incidence of BEA [28].

4.2.10.2.3. Serological Follow-up

In our study, 94.7% of the population thought that serological follow-up was necessary after a BEA. This result is similar to that found in the private sector of the same city, where 98% thought that serological follow-up was essential [14]. Also, at the CCTD in Rabat, 80.7% of practitioners confirmed that serological follow-up is necessary [13].

The results of this survey must be interpreted in light of several limitations. The major limitation of this study is its single-center design with a small number of practitioners who cannot represent all the dentists in Morocco, even if the participation rate is 98.61%. However, it is a center that receives patients from all over Morocco.

Blood exposure accidents (BEA) are among the most frequent accidents in health care settings and expose patients to serious risks of contamination. Our study has shown the seriousness of the situation. Primary and secondary prevention are essential.

Our results display the urgent need for the implementation of an approach that reinforces sensitization and improves the awareness of dentists towards the risks of BEA. Furthermore, training of practitioners is essential in order to improve and master the behavior to be adopted in front of these accidents, both immediately and subsequently.

This study highlights the high rate of blood exposure accidents among dentists and the need to improve prevention, training, and incident reporting to better protect both practitioners and patients.

5. Conclusion

This study highlights significant gaps between dentists' knowledge and their actual practices concerning blood exposure accidents (BEAs). Despite satisfactory adherence to standard precautions, the persistence of BEAs—mainly caused by needle sticks—reflects insufficient compliance with preventive measures and post-exposure protocols.

Strengthening continuous education and implementing targeted training programs are therefore essential to improve practitioners' responses in emergency situations. Establishing clear institutional prevention policies and monitoring adherence can help reduce occupational exposure risks and enhance overall safety in dental practice.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

FUNDING

This research received no external funding.

INFORMED CONSENT STATEMENT

Informed consent was obtained from all subjects involved in the study.

REFERENCES

- Meunier O, De Almeida N, Hernandez C, Bientz M. Accidents d'exposition au sang chez les étudiants en médecine [Blood exposure accidents among medical students]. Med Mal Infect. 2001;31:527-36.
- Yasukawa K, Tilotta-Yasukawa F. Accidents d'exposition au sang: risques [Blood exposure accidents: risks]. Chir Dent Fr. 2005;6(1215):114-8.
- Wicker S, Rabenau HF. Occupational exposures to bloodborne viruses among German dental professionals and students in a clinical setting. Int Arch Occup Environ Health. 2010;83:77-83.
- Varnoux F. Prévention du risque infectieux en médecine ambulatoire: évaluation des pratiques par les résidents de la faculté de Créteil lors de leur stage chez le praticien [Prevention of infectious risk in ambulatory medicine: evaluation of practices by residents of Créteil University during their internship]. Paris: Université Paris XII; 2006. Thèse de médecine générale. 2006.
- Watteau N. Le chirurgien-dentiste face aux risques professionnels, à propos de cas d'accident exposant au sang chez les étudiants de la faculté d'odontologie de Nancy [Dentists facing occupational risks: blood exposure accidents among students of Nancy dental school]. Nancy: Ūniversité de Nancy; [année?]. Thèse de chirurgie dentaire.
- Laraqui O, Laraqui S, Tripodi D, Zahraoui M, Caubet A, Verger C, et al. Evaluation des connaissances, attitudes et pratiques sur les accidents d'exposition au sang en milieu de soins au Maroc [Knowledge, attitudes, and practices regarding blood exposure accidents in Moroccan healthcare settings]. Med Mal Infect. 2008;38(12): 658-66.
- Giacobbi A, Folliguet M. La transmission infectieuse interhumaine au cabinet dentaire [Infectious transmission between humans in dental practice]. *Real Clin*. 2007;18(1):5–16.
- Greenspan D, Pindborg J, Schmidt M, Greenspan JS. Sida au cabinet dentaire [AIDS in dental practice]. Paris: CdP; 1987.
- Maupomé G, Acosta-Gío E, Borges-Yáñez SA, Díez-de-Bonilla FJ. Survey on attitudes toward HIV-infected individuals and infection control practices among dentists in Mexico City. Am J Infect Control. 2000;28(1):21-4.
- [10] Ammon A, Reichart PA, Pauli G, Petersen LR. Hepatitis B and C among Berlin dental personnel: incidence, risk factors, and effectiveness of barrier prevention measures. Epidemiol Infect. 2000;125(2):407-13.
- [11] Watteau N. Le chirurgien-dentiste face aux risques professionnels, à propos de cas d'accident exposant au sang chez les étudiants de la faculté d'odontologie de Nancy [Dentists facing occupational risks: blood exposure accidents among students of Nancy dental school]. Nancy: Université de Nancy; [année?]. Thèse de chirurgie dentaire.
- [12] Laroche-Clairey. Attention dentistes [Dentists beware]. Paris: Le Félin; 1997.
- Aitmadani S. Enquête sur les mesures prises lors d'accident d'exposition au sang dans un cabinet dentaire: enquête réalisée au CCTD de Rabat [Survey on measures taken after blood exposure accidents in a dental clinic: study conducted at CCTD Rabat]. Rabat: Université Mohammed V; 2003. Thèse de médecine dentaire.

- [14] Qarafi FZ. Evaluation des connaissances, attitudes et pratiques sur les accidents d'exposition au sang au cabinet dentaire [Knowledge, attitudes, and practices regarding blood exposure accidents in dental practice]. Casablanca: Université Hassan II; 2017. Thèse de médecine dentaire. 2017.
- [15] Sbai Idrissi K. Evaluation des connaissances, attitudes et pratiques des personnels des services de chirurgie et des laboratoires de l'HMIMV de Rabat [Knowledge, attitudes, and practices of surgical and laboratory staff at HMIMV Rabat]. Rabat: Université Mohammed V; 2005. Thèse de médecine générale. 2005.
- Beghdadli B, Ghomari O, Taleb M, Belhaj Z, Belabed A, Kandouci D, et al. Personnel at risk for occupational blood exposure in a university hospital in West Algeria. Santé Publique. 2009;21(3):
- [17] Percutaneous injuries among dental professionals in Washington state. BMC Public Health. [Internet]. 2006 [Accessed on August 2025];6:269. Available from: http://www.biomedcentral.
- [18] L'Hériteau F. Les risques infectieux liés aux accidents exposant au sang et aux liquides biologiques [Infectious risks related to blood and biological fluid exposure accidents]. Rev Fr Lab. 2005;376: 37-43
- [19] Ministère du Travail, de l'Emploi et de la Santé. Campagne de vaccination contre la grippe saisonnière 2011-2012: lancement de la campagne. Kit de presse. Paris: Ministère du Travail, de l'Emploi et de la Santé; 2011 Sep 23. Disponible sur: https://sante.gouv.fr/IMG/pdf/Vaccination_contre_la_grippe saisonniere_-_Lancement_de_la_campagne_2011-2012.pdf
- [20] Gzara A, Sahli J, Bahri F, Rekik K, Hachicha S, Ben Jemaa M, et al. "Knowledges-Practical Abilities" study about accidental blood exposures in first lines of health structures in Tunis. Rev Tun Infectiol. 2008;2(4):10-7.
- [21] Zeitoun R, Abiteboul D, Siksou B, Misska P. Risques professionnels et prévention des infections transmissibles par le sang [Occupational risks and prevention of bloodborne infections]. Inf Dent. 1997;27(41):3159-61.
- [22] Lot F. Surveillance des contaminations professionnelles par le VIH, le VHC et le VHB chez le personnel de santé [Surveillance of occupational infections with HIV, HCV and HBV among healthcare workers]. Doc Med Trav. 2005;103:335-46.
- CCLIN Sud-Est. Fiche pratique: prévention des infections associées aux soins en chirurgie dentaire [Practical guide: prevention of healthcare-associated infections in dentistry]. [Internet]. Available from: http://cclin-sudest.chu-lyon.fr/Doc_Rec
- [24] Di Giuseppe G, Nobile CGA, Marinelli P, Angelillo IF. A survey of knowledge, attitudes, and behavior of Italian dentists toward immunization. Vaccine. 2007;25(9):1669-75.
- [25] Olobuyide IO, Olawuyi F. Self-reported incidence of accidental exposures to patients' blood and body fluids by resident doctors in Nigeria. J R Soc Health. 1995 Aug;115(4):235-6, 241-3.
- Deslauriers L. Traçabilité des pièces à main dentaires pour le département de stomatologie de l'hôpital Notre-Dame [Traceability of dental handpieces for the stomatology department of Notre-Dame Hospital]. Montréal: CHU Montréal; 2013. Disponible sur: https://umontreal.scholaris.ca/bitstreams/ea0dad68-a189-4ec4-b4 b4-8a433ee16c3b/download.
- [27] Cleveland JL, Barker LK, Cuny EJ, Panlilio AL. National surveillance system for health care workers (NaSH) Group. Preventing percutaneous injuries among dental health care personnel. J Am Dent Assoc. 2007;138(2):169-78.
- Bellissimo-Rodrigues WT, Bellissimo-Rodrigues F, Machado AA. Occupational exposure to biological fluids among a cohort of Brazilian dentists. Int Dent J. 2006;56(6):332-7.